Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 123: 166-171, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284964

RESUMO

Grape must market has been rising and there is an increasing interest to use it as a "natural" replacement for traditional sugars. Food or beverages with prebiotic compounds, including fructo-oligosaccharides (FOS), emerge as an alternative for the new health style trend. The aim of this work was to investigate whether the combination of grape must with sucrose was a suitable raw material for the synthesis of FOS. This way, a prebiotic syrup containing fructose and FOS, potentially useful for the formulation of foods and beverages, could be obtained. The main process consisted of three stages, namely conditioning of grape must (oxidation of the initial glucose concentration, stage 1), synthesis of FOS [incorporation of 20, 30 and 55% (w/w) sucrose, and 3.5% v/v Viscozyme L - 4.2 U/mg-, stage 2], and conditioning of the final product (oxidation of the glucose generated during the synthesis, stage 3). At stage 1, glucose concentration decreased from 222.8 mg/mL to 47.2 mg/mL, representing a decay of about 80% regarding the initial concentration of glucose. At stage 2, incorporating 20% (w/w) sucrose was not enough to impulse FOS synthesis. In turn, although 30 and 55% (w/w) sucrose produced very similar concentrations of total FOS (DP3 + DP4), 55% (w/w) sucrose led to higher glucose generation and less DP4 formation. Hence, 30% (w/w) sucrose was the condition selected for the synthesis and further conditioning of the obtained product (stage 3). In these conditions, the final product consisted of more than 30% of short chain FOS (19% and 13% of DP3 and DP4, respectively), 55% fructose and less than 11% of glucose and sucrose. Considering that fructose has approximately double sweetening power than glucose, the obtained syrup has a bigger sweetening power in comparison with the original grape must, also providing the prebiotic benefits of FOS.


Assuntos
Oligossacarídeos/química , Sacarose/análise , Vitis/química , Frutose/análise , Glucose/análise , Modelos Teóricos , Adoçantes Calóricos/análise , Prebióticos/análise , Reprodutibilidade dos Testes
2.
Int J Food Sci Nutr ; 69(8): 928-937, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29366350

RESUMO

Adverse health effects found to be caused by the industrial trans fatty acids (TFAs) encouraged significant changes in the food supply. A working model was implemented based on a multisectoral approach to monitor progress in the reduction of TFAs in compliance with Argentine food regulations. We analysed the fatty-acid profiles of commercial foods over the entire country comparing the results before and after the deadline for the compliance. A 93% adherence in the foods was obtained after the finalisation of the deadline for the compliance with the limited use of partially hydrogenated vegetable oils. The analytical monitoring was a key tool operating for the compliance by the food manufacturers. The industrial TFAs were mostly replaced by semisolid fractions of vegetable oils containing high percentages of saturated fatty acids. Promising innovations for the food industry were established that provided more healthful alternative substitutes for TFAs.


Assuntos
Análise de Alimentos , Óleos de Plantas/análise , Ácidos Graxos trans/análise , Argentina , Gorduras na Dieta/análise , Substitutos da Gordura/análise , Ácidos Graxos/análise , Hidrogenação
3.
J Dairy Res ; 80(1): 64-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23186804

RESUMO

Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.


Assuntos
Sobrevivência Celular , Produtos Fermentados do Leite/microbiologia , Escherichia coli O157 , Lactobacillus plantarum/fisiologia , Toxina Shiga II/toxicidade , Animais , Parede Celular/fisiologia , Chlorocebus aethiops , Lactobacillus plantarum/ultraestrutura , Células Vero/efeitos dos fármacos
4.
J Dairy Res ; 78(4): 456-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22004606

RESUMO

A two-strain starter culture containing Lactobacillus plantarum CIDCA 83114, a potential probiotic strain isolated from kefir grains, and Streptococcus thermophilus CIDCA 321 was tested for the preparation of a fermented milk product. Kluyveromyces marxianus CIDCA 8154, a yeast with immunomodulatory properties was included to formulate a three-strain starter culture. Supernatants of enterohaemorragic Escherichia coli, shiga-toxin-producing strain, along with a two-strain or a three-strain starter culture were included in the medium of Vero-cell surface cultures. The results demonstrated that these combinations of microorganisms antagonize the cytopathic action of shiga toxins. The cell concentration of Lb. plantarum did not decrease during fermentation, indicating that the viability of this strain was not affected by low pH, nor did the number of viable bacteria change during 21 days of storage in either fermented products. The number of viable yeasts increases during fermentation and storage. Trained assessors analyzed the general acceptability of fresh fermented milks and considered both acceptable. The milk fermented with the two-strain starter culture was considered acceptable after two week of storage, while the product fermented with the three-strain starter culture remained acceptable for less than one week. The main changes in sensory attributes detected by the trained panel were in sour taste, milky taste and also in fermented attributes. The correlation between different sensory attributes and acceptability indicated that the panel was positively influenced by milky attributes (taste, odour, and flavour) as well as the intensity of flavour. In conclusion, the two-strain starter culture would be the more promising alternative for inclusion of that potential probiotic lactobacillus in a fermented milk product.


Assuntos
Produtos Fermentados do Leite/química , Produtos Fermentados do Leite/microbiologia , Probióticos/metabolismo , Animais , Fenômenos Químicos , Chlorocebus aethiops , Escherichia coli Êntero-Hemorrágica/metabolismo , Fermentação , Humanos , Kluyveromyces/metabolismo , Lactobacillus plantarum/metabolismo , Toxinas Shiga/antagonistas & inibidores , Olfato , Streptococcus thermophilus/metabolismo , Paladar , Células Vero
5.
J Food Prot ; 70(11): 2613-6, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18044443

RESUMO

The effects of kefir-fermented milk were tested against a toxigenic strain of Bacillus cereus. The incubation of milk with B. cereus spores plus 5% kefir grains prevented spore germination and growth of vegetative forms. In contrast, when 1% kefir grains was used, no effects were observed. The presence of metabolically active kefir grains diminished titers of nonhemolytic enterotoxin A, as assessed by enzyme-linked immunosorbent assay. During fermentation, kefir microorganisms produce extracellular metabolites such as organic acids, which could play a role in the inhibition of spore germination and growth of B. cereus, although the effect of other factors cannot be ruled out. Results of the present study show that kefir-fermented milk is able to antagonize key mechanisms involved in the growth of B. cereus as well as interfere with the biological activity of this microorganism.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Produtos Fermentados do Leite/microbiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Fermentação , Especificidade da Espécie , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...